Differences in SpeB protease activity among group A streptococci associated with superficial, invasive, and autoimmune disease

نویسندگان

  • Anhphan T Ly
  • John P Noto
  • Odaelys L Walwyn
  • Robert R Tanz
  • Stanford T Shulman
  • William Kabat
  • Debra E Bessen
چکیده

The secreted cysteine proteinase SpeB is an important virulence factor of group A streptococci (GAS), whereby SpeB activity varies widely among strains. To establish the degree to which SpeB activity correlates with disease, GAS organisms were recovered from patients with pharyngitis, impetigo, invasive disease or acute rheumatic fever (ARF), and selected for analysis using rigorous sampling criteria; >300 GAS isolates were tested for SpeB activity by casein digestion assays, and each GAS isolate was scored as a SpeB-producer or non-producer. Highly significant statistical differences (p < 0.01) in SpeB production are observed between GAS recovered from patients with ARF (41.5% SpeB-non-producers) compared to pharyngitis (20.5%), invasive disease (16.7%), and impetigo (5.5%). SpeB activity differences between pharyngitis and impetigo isolates are also significant, whereas pharyngitis versus invasive isolates show no significant difference. The disproportionately greater number of SpeB-non-producers among ARF-associated isolates may indicate an altered transcriptional program for many rheumatogenic strains and/or a protective role for SpeB in GAS-triggered autoimmunity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Absence of a cysteine protease effect on bacterial virulence in two murine models of human invasive group A streptococcal infection.

The cysteine protease of group A streptococci has been suggested to contribute to the pathogenesis of invasive infection through degradation of host tissue, activation of the host inflammatory response, release of protective molecules from the bacterial cell surface, or other mechanisms. However, studies of the effects on virulence of inactivating the cysteine protease gene speB have yielded co...

متن کامل

Streptococcus pyogenes strains associated with invasive and non-invasive infections present possible links with emm types and superantigens

Objective(s): Streptococcus pyogenes, a notorious human pathogen is responsible to cause a wide range of infections varies from superficial common clinical illness to severe and life threatening infections. To our knowledge this is the first report exploring the emm types and superantigen/exotoxin gene profile of S. pyogenes from Pakistan. Materials a...

متن کامل

Invasive M1T1 group A Streptococcus undergoes a phase-shift in vivo to prevent proteolytic degradation of multiple virulence factors by SpeB.

A globally disseminated strain of M1T1 group A Streptococcus (GAS) has been associated with severe infections in humans including necrotizing fasciitis and toxic shock syndrome. Recent clinicoepidemiologic data showed a striking inverse relationship between disease severity and the degree to which M1T1 GAS express the streptococcal cysteine protease, SpeB. Electrophoretic 2-D gel analysis of th...

متن کامل

Consequences of the variability of the CovRS and RopB regulators among Streptococcus pyogenes causing human infections

To evaluate the importance of covRS and ropB mutations in invasive disease caused by Group A Streptococci (GAS), we determined the sequence of the covRS and ropB genes of 191 isolates from invasive infections and pharyngitis, comprising a diverse set of emm types and multilocus sequence types. The production of SpeB and the activity of NAD glycohydrolase (NADase) and streptolysin S (SLS) were e...

متن کامل

The M protein is dispensable for maturation of streptococcal cysteine protease SpeB.

The streptococcal pyrogenic exotoxin B (SpeB) is an important virulence factor of group A streptococci (GAS) with cysteine protease activity. Maturation of SpeB to a proteolytically active form was suggested to be dependent on cell-wall-anchored M1 protein, the major surface protein of GAS (M. Collin and A. Olsen, Mol. Microbiol. 36:1306-1318, 2000). Collin and Olsen showed that mutant GAS stra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017